Normal view MARC view ISBD view

Modeling the Fiber Addition Influence on the Small Strain Shear Modulus of Sand

By: Vettorelo, Paula V.
Contributor(s): Claria, Juan J.
Publisher: New York Springer 2018Edition: Vol,48 (1), March.Description: 196-204p.Subject(s): Civil EngineeringOnline resources: Click Here In: Indian geotechnical journalSummary: mechanical behavior of fiber reinforced soils has been extensively studied in the last decades. Previous studies have shown that inclusion of fibers increases the shear strength of the reinforced soil. However, the presence of fibers can reduce, in some cases, the stiffness of the composite material. In this paper, we study the change on the initial stiffness in alluvial sand reinforced with polypropylene fibers. A model based on Hertz elastic contact theory is developed in order to explain the trends of shear wave velocity and maximum shear modulus in the fiber reinforced sand as the fiber content varies. The model assumes that the shear wave is transmitted through elastic distortions at the contacts, so the stiffness of the contacts governs the initial shear modulus, which in turn is affected by fiber additions. Furthermore, the ratio between the amount of grain to fiber contacts and the total of contacts on the shear wave path influence the maximum shear modulus. An experimental testing program involving confined compression tests with shear wave velocity measurements of unreinforced and fiber-reinforced sand specimens was undertaken to validate the proposed model trends. The model predictions were found to be in good agreement with the experimental results.
Tags from this library: No tags from this library for this title. Log in to add tags.
    average rating: 0.0 (0 votes)
Item type Current location Call number Status Date due Barcode Item holds
Articles Abstract Database Articles Abstract Database School of Engineering & Technology
Archieval Section
Not for loan 2021-2021487
Total holds: 0

mechanical behavior of fiber reinforced soils has been extensively studied in the last decades. Previous studies have shown that inclusion of fibers increases the shear strength of the reinforced soil. However, the presence of fibers can reduce, in some cases, the stiffness of the composite material. In this paper, we study the change on the initial stiffness in alluvial sand reinforced with polypropylene fibers. A model based on Hertz elastic contact theory is developed in order to explain the trends of shear wave velocity and maximum shear modulus in the fiber reinforced sand as the fiber content varies. The model assumes that the shear wave is transmitted through elastic distortions at the contacts, so the stiffness of the contacts governs the initial shear modulus, which in turn is affected by fiber additions. Furthermore, the ratio between the amount of grain to fiber contacts and the total of contacts on the shear wave path influence the maximum shear modulus. An experimental testing program involving confined compression tests with shear wave velocity measurements of unreinforced and fiber-reinforced sand specimens was undertaken to validate the proposed model trends. The model predictions were found to be in good agreement with the experimental results.

There are no comments for this item.

Log in to your account to post a comment.

Click on an image to view it in the image viewer

Unique Visitors hit counter Total Page Views free counter
Implemented and Maintained by AIKTC-KRRC (Central Library).
For any Suggestions/Query Contact to library or Email: librarian@aiktc.ac.in | Ph:+91 22 27481247
Website/OPAC best viewed in Mozilla Browser in 1366X768 Resolution.

Powered by Koha